首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   305篇
  免费   20篇
  2023年   2篇
  2022年   1篇
  2021年   6篇
  2020年   7篇
  2019年   4篇
  2018年   8篇
  2017年   3篇
  2016年   3篇
  2015年   17篇
  2014年   13篇
  2013年   29篇
  2012年   18篇
  2011年   24篇
  2010年   16篇
  2009年   11篇
  2008年   19篇
  2007年   24篇
  2006年   16篇
  2005年   17篇
  2004年   7篇
  2003年   15篇
  2002年   8篇
  2001年   14篇
  2000年   14篇
  1999年   5篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1980年   2篇
  1976年   1篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有325条查询结果,搜索用时 15 毫秒
41.
One popular way of measuring visual attentional processes in the rat is using 5-choice serial reaction time task (5-CSRTT). This paradigm requires subjects to detect brief flashes of light presented in a pseudorandom order in one of five spatial locations over a large number of trials. For this task, the animals are trained for approximately 30-40 daily sessions during which they gradually learn to respond in the appropriate aperture within a certain amount of time. If they fail to respond, respond in the wrong hole or at an inappropriate time, a short period of darkness (time-out) is presented as punishment and no reward is delivered. The 5-CSRTT provides the possibility to test the effects of various neural, pharmacological and behavioral manipulations on discrete and somewhat independent measures of behavioral control, including accuracy of discrimination, impulsivity, perseverative responses and response latencies.  相似文献   
42.
Recently, S-adenosylhomocysteine hydrolase deficiency was confirmed for the first time in an adult. Two missense mutations in codons 89 (A>V) and 143 (Y>C) in the AdoHcyase gene were identified [N.R.M. Buist, B. Glenn, O. Vugrek, C. Wagner, S. Stabler, R.H. Allen, I. Pogribny, A. Schulze, S.H. Zeisel, I. Bari?, S.H. Mudd, S-Adenosylhomocysteine hydrolase deficiency in a 26-year-old man, J. Inh. Metab. Dis. 29 (2006) 538-545]. Accordingly, we have proven the Y143C mutation to be highly inactivating [R. Beluzi?, M. Cuk, T. Pavkov, K. Fumi?, I. Bari?, S.H. Mudd, I. Jurak, O. Vugrek, A single mutation at tyrosine 143 of human S-adenosylhomocysteine hydrolase renders the enzyme thermosensitive and effects the oxidation state of bound co-factor NAD, Biochem. J. 400 (2006) 245-253]. Now we report that the A89V exchange leads to a 70% loss of enzymatic activity, respectively. Circular dichroism analysis of recombinant p.A89V protein shows a significantly reduced unfolding temperature by 5.5 degrees C compared to wild-type. Gel filtration of mutant protein is almost identical to wild-type indicating assembly of subunits into the tetrameric complex. However, electrophoretic mobility of p.A89V is notably faster as shown by native polyacrylamide gel electrophoresis implicating changes to the overall charge of the mutant complex. 'Bioinformatics' analysis indicates that Val(89) collides with Thr(84) causing sterical incompatibility. Performing site-directed mutagenesis changing Thr(84) to 'smaller' Ser(84) but preserving similar physico-chemical properties restores most of the catalytic capabilities of the mutant p.A89V enzyme. On the other hand, substitution of Thr(84) with Lys(84) or Gln(84), thereby introducing residues with higher volume in proximity to Ala(89) results in inactivation of wild-type protein. In view of our mutational analysis, we consider changes in charge and the sterical incompatibility in mutant p.A89V protein as main reason for enzyme malfunction with AdoHcyase deficiency as consequence.  相似文献   
43.
  • Cadmium (Cd) is detrimental to crops and the environment. This work examines the natural mechanisms underlying silicon‐ (Si‐)directed Cd detoxification in rice plants.
  • The addition of Si to plants under Cd stress caused significant improvements in morphological parameters, chlorophyll score, Fv/Fm and total soluble protein concentration compared to controls, confirming that Si is able to ameliorate Cd‐induced damage in rice plants. This morpho‐physiological evidence was correlated with decreased cell death and electrolyte leakage after Si application.
  • The results showed no critical changes in root Cd concentration, while shoot Cd decreased significantly after Si supplementation in comparison with Cd‐stressed rice. Additionally, expression of Cd transporters (OsNRAMP5 and OsHMA2) was significantly down‐regulated while the concentration of phytochelatin, cysteine and glutathione, together with expression of OsPCS1 (phytochelatin synthase) in roots of Cd‐stressed rice was significantly induced when subjected to Si treatment. This confirms that the alleviation of Cd stress is not only limited to the down‐regulation of Cd transporters but also closely related to the phytochelatin‐driven vacuolar storage of Cd in rice roots.
  • The enzymatic analysis further revealed the role of SOD and GR enzymes in protecting rice plants from Cd‐induced oxidative harm. These findings suggest a mechanistic basis in rice plants for Si‐mediated mitigation of Cd stress.
  相似文献   
44.
Morphological data from two Iris pumila populations (measured on native clones, on their replants into the same habitat, and on their transplants into alternative habitat) were combined with native clones spatial position and spatial autocorrelations (SA) were calculated. Naturally growing I. pumila clones revealed significant SA that were positive on small distances and negative on medium ones in both open Hillock and shaded Woodland populations. No significant SA were detected when calculated with original clone positions, but with morphometric data from replants into the experimental plot in the same habitat. Some significant SA were, however, detected when morphometric data from transplants to alternative habitat were used. Detected SA on I. pumila clones were primarily a consequence of spatial structuring of environmental factors but also, in a lesser degree, a result of genetic spatial arrangements (most probably due to patterns of gene flow). The text was submitted by the authors in English.  相似文献   
45.
46.
Recently soluble CD163 (sCD163), a cleaved form of the macrophage receptor CD163, was identified as a macrophage-specific risk-predictor for developing Type 2 Diabetes. Here, we investigate circulating levels of sCD163 in gestational diabetes mellitus (GDM). Furthermore, given the role of the placenta in the pathogenesis of GDM, we assessed placental contribution to sCD163 secretion. Paired maternal (venous) and umbilical vein blood samples from GDM (n = 18) and Body Mass Index (BMI) matched control women (n = 20) delivered by caesarean section at 39–40 week gestation were assessed for circulating levels of sCD163, Tumour necrosis factor alpha (TNF-α) and Interleukin 6 (IL-6). Media from explant culture of maternal subcutaneous fat and corresponding placental tissues were assayed for these same molecules. CD163 positive cell numbers were determined in placental and adipose tissues of GDM and control women. We found significantly elevated circulating sCD163 levels in GDM mothers (688.4±46.9 ng/ml vs. 505.6±38.6 ng/ml) and their offspring (418.2±26.6 ng/ml vs. 336.3±24.4 ng/ml [p<0.05 for both]) as compared to controls, together with elevated circulating TNF-α and IL-6 levels. Moreover, both GDM placentae (268.1±10.8 ng/ml/mg vs. 187.6±20.6 ng/ml/mg) and adipose explants (41.1±2.7 ng/ml/mg vs. 26.6±2.4 ng/ml/mg) released significantly more sCD163 than controls. Lastly, significantly more CD163 positive cells were observed in GDM placentae (25.7±1.1 vs. 22.1±1.2) and adipose tissue (19.1±1.1 vs 12.7±0.9) compared to controls. We describe elevated sCD163 levels in GDM and identify human placenta as a novel source of sCD163 suggesting that placental tissues might contribute to the increased levels of circulating sCD163 in GDM pregnancies.  相似文献   
47.
Arsenic (As) is a phytotoxic element causing health hazards. This work investigates whether and how silicon (Si) alleviates As toxicity in wheat. The addition of Si under As-stress significantly improved morphophysiological characteristics, total protein, and membrane stability compared to As-stressed plants, suggesting that Si does have critical roles in As detoxification in wheat. Analysis of arsenate reductase activity and phytosiderophore (PS) release reveals their no involvement in the Si-mediated alleviation of As in wheat. Furthermore, Si supplementation in As-stressed plants showed a significant increase of As in roots but not in shoots compared with the plants grown under As stress. Further, gene expression analysis of two chelating molecules, TaPCS1 (phytochelatin synthase) and TaMT1 (metallothionein synthase) showed significant induction due to Si application under As stress compared with As-stressed plants. It is consistent with the physiological observations and suggests that alleviation of As toxicity in rice might be associated with As sequestration in roots leading to reduced As translocation in shoots. Furthermore, increased catalase, peroxidase, and glutathione reductase activities in roots imply the active involvement of reactive oxygen species scavenging for protecting wheat plants from As-induced oxidative injury. The study provides mechanistic evidence on the beneficial effect of Si on As toxicity in wheat plants.  相似文献   
48.
Three β‐keto sulfoxides ( 1–3 ) were synthesized in enantiopure form and investigated by means of circular dichroism (CD) spectroscopy, both in electronic and vibrational range (ECD, VCD), in combination with quantum chemical calculations. For compound 2 , the X‐ray structure was available; thus, the ECD in the solid state was also considered to reveal the differences between the molecular species in both states. Despite the simplicity of all β‐keto sulfoxides under investigation (29 atoms), reproducing even the major spectral VCD features failed for two compounds, making the use of VCD not ideal to assign their absolute configuration in a reliable way. We demonstrated, however, that the use of ECD spectroscopy, both in solution and solid state, can easily, unambiguously, and without any complication simulate all bands by applying the standard protocol for calculations. This study may stimulate the debate on the need of the use of two chiroptical methods simultaneously in the determination of absolute configurations.  相似文献   
49.
  • Zinc (Zn) is an essential micronutrient for the growth and development of plants. However, Zn deficiency is a common abiotic stress causing yield loss in crop plants. This study elucidates the mechanisms of Zn deficiency tolerance in maize through physiological and molecular techniques.
  • Maize lines tolerant (PAC) and sensitive (DAC) to Zn deficiency were examined physiologically and by atomic absorption spectrometry (AAS). Proteins, H2O2, SOD, POD, membrane permeability and gene expression (using real‐time PCR) of roots and shoots of both maize lines were assessed.
  • Zn deficiency had no significant effect on root parameters compared with control plants in PAC and DAC but showed a substantial reduction in shoot parameters in DAC. AAS showed a significant decrease in Zn concentrations in both roots and shoots of DAC but not PAC under Zn deficiency, implying that Zn deficiency tolerance mechanisms exist in PAC. Consistently, total protein and membrane permeability were significantly reduced in DAC but not PAC in both roots and shoots under Zn deficiency in comparison with Zn‐sufficient plants. Real‐time PCR showed that expression of ZmZIP1, ZmZIP4 and ZmIRT1 transporter genes significantly increased in roots of PAC, but not in DAC due to Zn deficiency compared with controls. The H2O2 concentration dramatically increased in roots of DAC but not PAC. Moreover, tolerant PAC showed a significant increase in POD and SOD activity due to Zn deficiency, suggesting that POD‐ and SOD‐mediated antioxidant defence might provide tolerance, at least in part, under Zn deficiency in PAC.
  • This study provides an essential background for improving Zn biofortification of maize.
  相似文献   
50.
To better understand what directs and limits the evolution of phenotype, constraints in the realization of the optimal phenotype need to be addressed. That includes estimations of variability of adaptively important traits as well as their correlation structures, but also evaluation of how they are affected by relevant environmental conditions and development phases. The aims of this study were to analyze phenotypic plasticity, genetic variability and correlation structures of important Iris pumila leaf traits in different light environments and ontogenetic phases, and estimate its evolutionary potential. Stomatal density, specific leaf area, total chlorophyll concentration and chlorophyll a/b ratio were analyzed on I. pumila full‐sib families in the seedling phase and on the same plants after 3 years of growth in contrasting light conditions typical for ontogenetic stage in question. There was a significant phenotypic plasticity in both ontogenetic stages, but significant genetic variability was detected only for chlorophyll concentrations. Correlations of the same trait between different stages were weak due to changes in environmental conditions and difference in ontogenetic reaction norms of different genotypes. Ontogenetic variability of correlation structures was detected, where correlations and integration were higher in seedlings compared with adult plants 3 years later. Correlations were affected by environmental conditions, with integration being higher in the lower light conditions, but correlations between phases being stronger in the higher light treatment. These findings demonstrated that the analyzed traits can be selected and can mostly evolve independently in different environments and ontogenetic stages, with low genetic variability as a potentially main constraint.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号